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The Nature of Vibrational Softening in α -Uranium

FIGURE 1. The phonon density of states of uranium. Data from 300 K and
above were obtained from spectra acquired with FCS.  Data from 300 K
and below were measured on LRMECS.

The standard textbook explanation for phonon softening
with increasing temperature in a single phase is that the

interatomic potentials are not perfectly harmonic, but it has
been suggested that phonon softening can also occur if the
potential itself can change with temperature, while remain-
ing harmonic. For example, a large softening of the vibra-
tional properties of α-uranium has been observed [1] that
cannot be explained in terms of the anharmonic lattice
contribution alone. In the present work a harmonic contribu-
tion to the phonon softening is made evident by treating
inelastic neutron scattering spectra as an expansion of the
vibrational power spectrum of the atomic motion.

Earlier diffractometry measurements by Lawson et al.,
[2] suggested that the Debye temperature decreased by 40 %
in going from 300 K to the â-phase transition temperature at
940 K. In terms of entropy this corresponds to an additional
ÄS = -3kBln(0.6) = 1.5 kB/atom. The usual thermodynamic
argument is that this increase in vibrational entropy compen-
sates for the elastic energy generated by thermal expansion.
However, from heat capacity data, the entropy needed to
compensate for the elastic energy is nearly an order of
magnitude too small at 0.16 kB/atom.

All experiments used uranium powder. High tempera-
ture measurements were made using the Fermi-Chopper
Spectrometer (FCS) at the NCNR. Low temperature mea-
surements were performed with the Low Resolution Medium
Energy Chopper Spectrometer (LRMECS) at Argonne
National Laboratory. Figure 1 shows the phonon density of
states obtained from the measured spectra, corrected for the
incoherent multiphonon scattering using a procedure
described elsewhere [3]. There is a redistribution of intensity
in the main features at ≈ 8 meV and ≈ 12 meV, with the
higher energy peak gaining extra weight with increasing
temperature. These features also show an overall softening
of around one meV for every 200 K increase in temperature.

The Q-summed one phonon scattering function was
used to calculate a quantity proportional to the square of the
power spectrum and hence to the average potential energy
per oscillator, <U>. In Fig. 2 we show <U> for α-uranium
at the four highest temperatures scaled so that the lowest
point is at the harmonic energy kBT/2. The effects of
anharmonicity on <U> would be evident as a nonlinearity in
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FIGURE 2. Vibrational potential energy of ααααα-uranium (open circles). The
Lennard-Jones, Morse_1 and Morse_2 curves were calculated from
potentials described in the text. The Harmonic curve is the result for a
harmonic potential in the classical limit.
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the plot of <U> vs. temperature. For comparison, attempts
were made to calculate the temperature dependence of the
potential energy of Morse and Lennard-Jones potentials with
the appropriate vibrational softening for uranium [1]. The
result shown in Fig. 2 indicates that, in the high temperature
limit, the potential energy has nearly a linear dependence on
temperature, i.e., the phonon softening in α-uranium occurs
while the potential remains primarily harmonic. Evidently
the interatomic force constants are decreasing with increas-
ing temperature. Since the force constants originate from the
change of the electronic energy with atom displacements, it
must be that thermal excitations of the electronic states are
altering the force constants.

The phonon density of states of the three solid state
phases of uranium, orthorhombic (α), tetragonal (â) and
body centered cubic (γ ) are compared in the top panel of
Fig. 1. The γ-uranium phonon density of states was
statistically identical at 1113 K and 1213 K. Evidently, the
thermal softening mechanism seen in α-phase does not
operate in the γ-phase. The â-phase was not stable over a

wide enough temperature range to obtain a reliable
temperature dependence. The phonon softening between
each phase accounted for vibrational entropy changes of
0.15 ± 0.01 kB/atom and 0.20 ± 0.01 kB/atom for the α to â
and â to γ transitions, respectively. Both of these values
make up only about 35 % to 40 % of the total entropy
changes predicted from latent heat measurements:
(Sβ-Sα)tot = 0.37 kB/atom and (Sγ-Sβ)tot = 0.55 kB/atom. The
remaining 60 % of the entropy increases must be electronic
in origin. So not only does the phonon softening disappear in
the high temperature γ-phase, but also it does so with a large
increase in electronic entropy.

Electronic band structure calculations used to predict
phonon frequencies are based on the assumption that thermal
effects can be neglected when compared to volume effects.
The actinides, however, show the need for more sophisti-
cated treatments of the role of temperature on interatomic
interactions.
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